Front dynamics in reaction-diffusion systems with Levy flights: a fractional diffusion approach.
نویسندگان
چکیده
The use of reaction-diffusion models rests on the key assumption that the diffusive process is Gaussian. However, a growing number of studies have pointed out the presence of anomalous diffusion, and there is a need to understand reactive systems in the presence of this type of non-Gaussian diffusion. Here we study front dynamics in reaction-diffusion systems where anomalous diffusion is due to asymmetric Levy flights. Our approach consists of replacing the Laplacian diffusion operator by a fractional diffusion operator of order alpha, whose fundamental solutions are Levy alpha-stable distributions that exhibit power law decay, x(-(1+alpha)). Numerical simulations of the fractional Fisher-Kolmogorov equation and analytical arguments show that anomalous diffusion leads to the exponential acceleration of the front and a universal power law decay, x(-alpha), of the front's tail.
منابع مشابه
Capillary Network, Cancer and Kleiber Law
We develop a heuristic model embedding Kleiber and Murray laws to describe mass growth, metastasis and vascularization in cancer. We analyze the relevant dynamics using different evolution equations (Verhulst, Gompertz and others). Their extension to reaction diffusion equation of the Fisher type is then used to describe the relevant metastatic spreading in space. Regarding this last point, we ...
متن کاملFront dynamics in a two-species competition model driven by Lévy flights.
A number of recent studies suggest that many biological species follow a Lévy random walk in their search for food. Such a strategy has been shown to be more efficient than classical Brownian motion when resources are scarce. However, current diffusion-reaction models used to describe many ecological systems do not account for the superdiffusive spread of populations due to Lévy flights. We hav...
متن کاملNumerical Solution of Caputo-Fabrizio Time Fractional Distributed Order Reaction-diffusion Equation via Quasi Wavelet based Numerical Method
In this paper, we derive a novel numerical method to find out the numerical solution of fractional partial differential equations (PDEs) involving Caputo-Fabrizio (C-F) fractional derivatives. We first find out the approximation formula of C-F derivative of function tk. We approximate the C-F derivative in time with the help of the Legendre spectral method and approximation formula o...
متن کامل2 00 6 Fractional Reaction - Diffusion Equations
In a series of papers, Saxena, Mathai, and Haubold (2002, 2004a, 2004b) derived solutions of a number of fractional kinetic equations in terms of generalized Mittag-Leffler functions which provide the extension of the work of Haubold and Mathai (1995, 2000). The subject of the present paper is to investigate the solution of a fractional reaction-diffusion equation. The results derived are of ge...
متن کاملA numerical treatment of a reaction-diffusion model of spatial pattern in the embryo
In this work the mathematical model of a spatial pattern in chemical and biological systems is investigated numerically. The proposed model considered as a nonlinear reaction-diffusion equation. A computational approach based on finite difference and RBF-collocation methods is conducted to solve the equation with respect to the appropriate initial and boundary conditions. The ability and robust...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Physical review letters
دوره 91 1 شماره
صفحات -
تاریخ انتشار 2003